

Daily Tutorial Sheet 4

JEE Advanced (Archive)

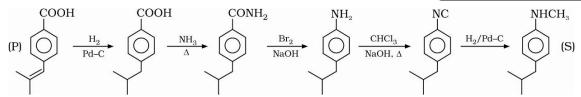
 $\textbf{46.(BD)} \ \text{Phenol and carboxylic acid are soluble in aq. NaOH. Only carboxylic acid is soluble in NaHCO_3. Alcohols are insoluble in both NaOH and NaHCO_3 solution.}$

48.(D) Phenol does not liberate CO_2 , on treatment with aq. NaHCO $_3$

COOH

49.(2)
$$\xrightarrow{O}$$
 $\xrightarrow{H_3O^+}$ \xrightarrow{O} \xrightarrow{COOH} \xrightarrow{A} \xrightarrow{COO} \xrightarrow{O} \xrightarrow{O}

50.(B) 51.(A)


For solution refer to Illustration 11, Page-28 in Oxygen Containing Organic Compounds-III Module-7.

- 52.(A) For detailed solution refer to Illustration Number 5, Page-14 in "Organic Concepts".
- 53.(A) Ortho substituted benzoic acid is strongest acid among substituted benzoic acid.
- **54.(C)** LiAlH $_4$ in Et $_2$ O, BH $_3$ in THF & Raney Ni / H $_2$ in THF reduces aldehydic group, carboxylic acid and ester groups. NaBH $_4$ in EtOH reduces only aldehyde groups.

55.(A) 56.(B)

$$\begin{array}{c} P & \begin{array}{c} & \\ & \\ & \\ \end{array} & \begin{array}{c} COOH \\ \\ & \\ \end{array} & \begin{array}{c} COOH \\ \end{array} & \begin{array}{c} COOH \\ \end{array} & \begin{array}{c} COOH \\ \\ \end{array} & \begin{array}{c} COOH \\ \end{array} & \begin{array}{c} COOH$$

57.(D) $HC \equiv C -$, $CH_2 = CH -$ and $p - MeO - C_6H_4 -$ acts as electron withdrawing group while $CH_3CH_2 -$ acts as electron releasing group. Presence of electron withdrawing group increases acidic strength while presence of electron releasing group decreases acidic strength.